

 Department of CSE Page 1 of 28

UNIT- I PHP

TOPICS:

Introduction to PHP

Declaring Variables

Data Types

Operators

Control Structures

Functions

Reading data from WEB form controls

like text boxes, radio buttons, lists etc..

Handling File Uploads

Handling Sessions and Cookies

PHP INTRODUCTION

PHP is a recursive acronym for "PHP: Hypertext Preprocessor".

PHP is a server side scripting language that is embedded in HTML. PHP scripts are executed
on the server

It is used to manage dynamic content, databases, session tracking, even build entire e-

commerce sites.

PHP supports many databases (MySQL, Informix, Oracle, Sybase, Solid, PostgreSQL, Generic

ODBC, Microsoft SQL Server , etc.)

PHP is an open source software.

PHP is pleasingly zippy in its execution, especially when compiled as an Apache module on the
Unix side. The MySQL server, once started, executes even very complex queries with huge
result sets in record-setting time.

PHP supports a large number of major protocols such as POP3, IMAP, and LDAP.

PHP is forgiving: PHP language tries to be as forgiving as possible.

PHP Syntax is C-Like.

Common uses of PHP:

PHP performs system functions, i.e. from files on a system it can create, open, read, write, and
close them. The other uses of PHP are:

PHP can handle forms, i.e. gather data from files, save data to a file, thru email you can send

data, return data to the user.

You add, delete, and modify elements within your database thru PHP.

Access cookies variables and set cookies.

Using PHP, you can restrict users to access some pages of your website.

It can encrypt data.

PHP started out as a small open source project that evolved as more and more people found

out how useful it was. Rasmus Lerdorf unleashed the first version of PHP way back in 1994.

 Department of CSE Page 2 of 28

Characteristics of PHP:

Simplicity

Efficiency

Security

Flexibility

Familiarity

All PHP code must be included inside one of the three special markup tags are recognized by the

PHP Parser.

Most common tag is the <?php...?>

SYNTAX OVERVIEW:

Canonical PHP tags The most universally effective PHP tag style is:
<?php...?>

Short-open (SGML-style) tags Short or short-open tags look like this:
<?...?>

HTML script tags HTML script tags look like this:
<script language="PHP">...</script>

PHP - VARIABLE TYPES

The main way to store information in the middle of a PHP program is by using a variable. Here

are the most important things to know about variables in PHP.

A variable is used to store information.

All variables in PHP are denoted with a leading dollar sign ($).

The value of a variable is the value of its most recent assignment.

Variables are assigned with the = operator, with the variable on the left-hand side and the

expression to be evaluated on the right.

Variables can, but do not need, to be declared before assignment.

Variables used before they are assigned have default values.

PHP does a good job of automatically converting types from one to another when

necessary.

PHP variables are Perl- like.

Syntax: $var_name = value;

Eg: creating a variable containing a string, and a variable containing a number:

<?php

$txt="HelloWorld!";

$x=16;

?>

<?php PHP code goes here ?>

<? PHP code goes here ?>

<script language="php"> PHP code goes here </script>

 Department of CSE Page 3 of 28

PHP is a Loosely Typed Language:

 In PHP, a variable does not need to be declared before adding a value to it.

 You do not have to tell PHP which data type the variable is

 PHP automatically converts the variable to the correct data type, depending on its value.

Naming Rules for Variables

 A variable name must start with a letter or an underscore "_"

 A variable name can only contain alpha- numeric characters and underscores (a-z, A-Z,
0-9, and _)

 A variable name should not contain spaces. If a variable name is more than one word, it

should be separated with an underscore ($my_string), or with capitalization/Camel notation

($myString)

PHP Variables Scope

In PHP, variables can be declared anywhere in the script. The scope of a variable is the part of

the script where the variable can be referenced / used. PHP has three different variable scopes:

local

global

static

Global and Local Scope

A variable declared outside a function has a GLOBAL SCOPE and can only be accessed outside
a function:

Example

<?php
$x = 5; // global scope

function myTest() {

// using x inside this function will generate an error

echo "<p>Variable x inside function is: $x</p>";
}
myTest();

echo "<p>Variable x outside function is: $x</p>";

?>

A variable declared within a function has a LOCAL SCOPE and can only be accessed within
that function:

Example

<?php

function myTest() {

$x = 5; // local scope

echo "<p>Variable x inside function is: $x</p>";

}

myTest(); // using x outside the function will generate an error
echo "<p>Variable x outside function is: $x</p>";

?>

You can have local variables with the same name in different functions, because local variables

are only recognized by the function in which they are declared.

 Department of CSE Page 4 of 28

PHP The global Keyword

The global keyword is used to access a global variable from within a function. To do this, use the

global keyword before the variables (inside the function):

Example

<?php

$x = 5; $y = 10;
function myTest() {

global $x, $y;

$y = $x + $y; }

myTest();

echo $y; // outputs 15
?>

PHP also stores all global variables in an array called $GLOBALS[index]. The index holds the

name of the variable. This array is also accessible from within functions and can be used to

update global variables directly. The example above can be rewritten likethis:

Example

<?php

$x = 5;

$y = 10;

function myTest() {

$GLOBALS['y'] = $GLOBALS['x'] + $GLOBALS['y'];

}

myTest();
echo $y; //

?>

PHP The static Keyword

Normally, when a function is completed / executed, all of its variables are deleted. However,

sometimes we want a local variable NOT to be deleted. We need it fo r a further job.

To do this, use the static keyword when you first declare the variable:
Example

<?php

function myTest() {

static $x = 0;

echo $x;
$x++;

}

myTest();

myTest();

myTest(); ?>

Then, each time the function is called, that variable will still have the information it contained
from the last time the function was called.

Note: The variable is still local to the function.

Output: 0 1 2

outputs 15

 Department of CSE Page 5 of 28

Variable Naming
Rules for naming a variable is-

Variable names must begin with a letter or underscore character.

A variable name can consist of numbers, letters, underscores but you cannot use characters like

+ , - , % , (,) . & , etc

There is no size limit for variables.

PHP - Data Types:

PHP has a total of eight data types which we use to construct our variables:

Integers: are whole numbers, without a decimal point, like 4195.

Doubles: are floating-point numbers, like 3.14159 or 49.1. Scalar types

Booleans: have only two possible values either true or false.
Strings: are sequences of characters, like 'PHP supports string operations.'

Arrays: are named and indexed collections of other values.

Objects: are instances of programmer-defined classes. Compound types

NULL: is a special type that only has one value:NULL.

Resources: are special variables that hold references to resources external Special types

to PHP (such as database connections).

The first four are simple types, and the next two (arrays and objects) are compound - the
compound types can package up other arbitrary values of arbitrary type, whereas the simple

types cannot.

PHP Integers
Integers are primitive data types. They are whole numbers, without a decimal point, like 4195.
They are the simplest type. They correspond to simple whole numbers, both positive and

negative {..., -2, -1, 0, 1, 2, ...}.

Integer can be in decimal (base 10), octal (base 8), and hexadecimal (base 16) format. Decimal

format is the default, octal integers are specified with a leading 0, and hexadecimals have a

leading 0x.
Ex: $v = 12345;

$var1 = -12345 + 12345;

notation.php

<?php

$var1 = 31; $var2 = 031; $var3 = 0x31;
echo "$var1\n$var2\n$var3"; ?>

The default notation is the decimal. The script shows these three numbers in decimal. In Java

and C, if an integer value is bigger than the maximum value allowed, integer overflow happens.

PHP works differently. In PHP, the integer becomes a float number. Floating point numbers have

greater boundaries. In 32bit system, an integer value size is four bytes. The maximum integer

value is 2147483647.

Output:

31

25

49

 Department of CSE Page 6 of 28

boundary.php

<?php

$var = PHP_INT_MAX;
echo var_dump($var);

$var++;
echo var_dump($var);

?>

We assign a maximum integer value to the $var variable. We increase the variable by one. And
we compare the contents.

As we have mentioned previously, internally, the number becomes a floating point value.

var_dump(): The PHP var_dump() function returns the data type and value.

PHP Doubles or Floating point numbers
Floating point numbers represent real numbers in computing. Real numbers measure continuous
quantities like weight, height or speed. Floating point numbers in PHP can be larger than integers

and they can have a decimal point. The size of a float is platform dependent.

We can use various syntaxes to create floating point values.

<?php

$a = 1.245;

$b = 1.2e3;

$c = 2E-10;

$d = 1264275425335735;
var_dump($a);

var_dump($b);

var_dump($c);

var_dump($d);

?>

The $d variable is assigned a large number,
so it is automatically converted to float type.

This is the output of beside script

PHP Boolean

A Boolean represents two possible states: TRUE or FALSE.

$x = true; $y = false;
Booleans are often used in conditional testing.

<?php

$male = False;

$r = rand(0, 1);

$male = $r ? True: False;
if ($male) {

echo "We will use name John\n";

} else {

echo "We will use name Victoria\n";

} ?>

Output:

int(2147483647)

float(2147483648)

Output:

float(1.245)

float(1200)

float(2.0E-10)
float(1264275425340000)

 Department of CSE Page 7 of 28

The script uses a random integer generator to simulate our case. $r = rand(0, 1);

The rand() function returns a random number from the given integer boundaries 0 or 1.

$male = $r? True: False;

We use the ternary operator to set a $male variable. The variable is based on the random $r
value. If $r equals to 1, the $male variable is set to True. If $r equals to 0, the $male variable
is set to False.

PHP Strings
String is a data type representing textual data in computer programs. Probably the single most

important data type in programming.

<?php

$a = "PHP ";

$b = 'PERL';

echo $a . $b; ?>

 Output: PHP PERL

We can use single quotes and double quotes to create string literals.

The script outputs two strings to the console. The \n is a special sequence, a new line.

The escape-sequence replacements are −

\n is replaced by the newline character

\r is replaced by the carriage-return character

\t is replaced by the tab character
\$ is replaced by the dollar sign itself ($)

\" is replaced by a single double-quote (")

\\ is replaced by a single backslash (\)

The Concatenation Operator

There is only one string operator in PHP.

The concatenation operator (.) is used to put two string values together. To concatenate two

string variables together, use the concatenation operator:

<?php
$txt1="Hello Kalpana!";

$txt2="What a nice day!";
echo $txt1 . " " . $txt2;

?>

O/P: Hello Kalpana! What a nice day!

Search for a Specific Text within a String

The PHP strpos() function searches for a specific text within a string. If a match is found, the
function returns the character position of the first match. If no match is found, it will return
FALSE. The example below searches for the text "world" in the string "Hello world!":

 Example

<?php

echo strpos("Hello world!", "world");

?>
output: 6

Tip: The first character position in a string is 0 (not 1).

Replace Text within a String

The PHP str_replace() function replaces some characters with some other characters in a

string. The example below replaces the text "world" with "Dolly"

 Department of CSE Page 8 of 28

 Example

<?php

echo str_replace("world", "Kalpana", "Hello world!");

?>

Output: Hello Kalpana!

The strlen() function:

The strlen() function is used to return the length of a string. Let's find the length of a string:

Eg: <?php

echo strlen("Hello world!"); ?>

The output of the code above will be: 12

PHP Array

Array is a complex data type which handles a collection of elements. Each of the elements

can be accessed by an index. An array stores multiple values in one single variable. In the

following example $cars is an array. The PHP var_dump() function returns the data type and

value:

Example

<?php

$cars = array("Volvo","BMW","Toyota");

print_r($cars);

var_dump($cars);
?>

The array keyword is used to create a collection of elements. In our case we have names.
The print_r function prints human readable information about a variable to the console.

PHP Object
An object is a data type which stores data and information on how to process that data. In

PHP, an object must be explicitly declared. First we must declare a class of object. For this,

we use the class keyword. A class is a structure that can contain properties and methods:

Example

<?php
class Car {

function Car() {

$this->model = "VW";

} }

$herbie = new Car(); // create an object

echo $herbie->model; // show object properties

?>

Output: VW

PHP NULL

NULL is a special data type that only has one value: NULL. To give a variable the NULL
value, simply assign it like this −

Ex: $my_var = NULL;

The special constant NULL is capitalized by convention, but actually it is case insensitive;
you could just as well have typed −

O/P: Array ([0] => Volvo [1] => BMW [2] => Toyota)
array(3) { [0]=> string(5) "Volvo" [1]=> string(3) "BMW" [2]=> string(6) "Toyota" }

 Department of CSE Page 9 of 28

$my_var = null;

 Tip: If a variable is created without a value, it is automatically assigned a value of NULL. Variables
can also be emptied by setting the value to NULL:

Example1

<?php

$x = "Hello world!";

$x = null;

var_dump($x);

?>

PHP Resource
The special resource type is not an actual data type. It is the storing of a reference to

functions and resources external to PHP. A common example of using the resource data type

is a database call. Resources are handlers to opened files, database connections or image

canvas areas. We will not talk about the resource type here, since it is an advanced topic.

constant() function
As indicated by the name, this function will return the value of the constant. This is useful

when you want to retrieve value of a constant, but you do not know its name, i.e. It is stored

in a variable or returned by a function.constant() example

<?php

define("MINSIZE", 50);

echo MINSIZE;

echo constant("MINSIZE"); // same thing as the previous line

?>

Output: 50 50

Only scalar data (boolean, integer, float and string) can be contained in constants.

PHP - Operators:
What is Operator?

Simple answer can be given using expression 4 + 5 is equal to 9. Here 4 and 5 are called
operands and + is called operator. PHP language supports following type of operators.

Arithmetic Operators:

There are following arithmetic operators supported by PHP language:
Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

+ Adds two operands $A + $B will give 30

- Subtracts second operand from the first $A - $B will give -10

* Multiply both operands $A *$B will give 200

/ Divide numerator by denumerator $B / $A will give 2

 Department of CSE Page 10 of 28

% Modulus Operator and remainder of after
division

an integer $B % $A will give 0

** Exponentiation ($x to the $y'th power) $A ** $B

 Department of CSE Page 11 of 28

Increment/Decrement operators

Operator Description Example

++ Increment operator, increases integer value by one $A++ - 11 / ++$A

-- Decrement operator, decreases integer value by one $A-- will give 9 / --$A

Comparison Operators:

There are following comparison operators supported by PHP language Assume variable A

holds 10 and variable B holds 20 then:

Operator Description Example

== Checks if the value of two operands are equal or not ($A==$B) is not true.

=== Identical(Returns true if $A is equal to $B, and they

are of the same type)

$A === $B

!= Checks if the values of two operands are equal or not, ($A != $B) is true.

if values are not equal then condition becomes true.

<> Returns true if $x is not equal to $y $A <> $B

!== Not identical (Returns true if $A is not equal to $B, or $A !== $B

they are not of the same type)

> Checks if the value of left operand is greater than the ($A > $B) is not true.

value of right operand, if yes then condition becomes
true.

< Checks if the value of left operand is less (A < B) is

true. Than the value of right operand, if yes then
condition becomes true.

>= Checks if the value of left operand is greater than or ($A >= $B) is not true.

equal to the value of right operand, if yes then returns
true.

<= Checks if the value of left operand is less than or equal ($A <= $B) is true.
to the value of right operand, if yes then condition

becomes true.

Logical Operators:

There are following logical operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

and (or)

&&

Called Logical AND operator. If both the operands

are true then then condition becomes true.

($A and $B) is true.

($A && $B) is true.

or (or) || Called Logical OR Operator. If any of the two
operands are non zero then then condition becomes
true.

($A or $B) is true.
($A || $B) is true.

! Called Logical NOT Operator. Use to reverses the

logical state of its operand. If a condition is true
then Logical NOT operator will makefalse.

!($A && $B) is false.

Assignment Operators:

There are following assignment operators supported by PHP language:

Operator Description Example

= Simple assignment operator, Assigns values from right
side operands to left side operand

$C = $A + $B

 Department of CSE Page 12 of 28

+= Add AND assignment operator, It adds right operand
to the left operand and assign the result to left operand

$C += $A is equivalent
to $C = $C + $A

-= Subtract AND assignment operator, It subtracts right

operand from the left operand and assign the result to
left operand

$C -= $A is equivalent

to $C = $C - $A

*= Multiply AND assignment operator, It multiplies right
operand with the left operand and assign the result to
left operand

$C *= $A is equivalent
to $C = $C * $A

/= Divide AND assignment operator, It divides left
operand with the right operand and assign the result to
left operand

$C /= $A is equivalent
to $C = $C / $A

%= Modulus AND assignment operator, It takes modulus
using two operands and assign the result to left
operand

$C %= $A is
equivalent to

$C = $C % $A

Conditional Operator

There is one more operator called conditional operator. This first evaluates an expression for

a true or false value and then execute one of the two given statements depending upon the

result of the evaluation.

The conditional operator has this syntax:

Operator Description Example

? : Conditional Expression If Condition is true ? Then value X : Otherwise value Y

PHP String Operators

PHP has two operators that are specially designed for strings.

Operator Description Example

. Concatenation $txt1 . $txt2 (Concatenation of $txt1 and $txt2)

.= Concatenation assignment $txt1 .= $txt2 (Appends $txt2 to $txt1)

PHP Array Operators

The PHP array operators are used to compare arrays.

Operator Description Example

+ Union $x + $y (Union of $x and $y)

== Equality $x == $y (Returns true if $x and $y have the same key/value pairs)

=== Identity $x === $y (Returns true if $x and $y have the same key/value

pairs in the same order and of the same types)

!= or <> Inequality $x != $y or $x <> $y Returns true if $x is not equal to $y

!== Non-identity $x !== $y (Returns true if $x is not identical to $y)

Precedence of PHP Operators

Operator precedence determines the grouping of terms in an expression. This affects how an

expression is evaluated. Certain operators have higher precedence than others; for example,

the multiplication operator has higher precedence than the addition operator −

For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher
precedence than + so it first get multiplied with 3*2 and then adds into 7. Ans:13

Here operators with the highest precedence appear at the top of the table; those with the
lowest appear at the bottom. Within an expression, higher precedence operators will be
evaluated first.

 Department of CSE Page 13 of 28

Category Operator Associativity

Unary ! ++ -- Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= Right to left

Ex:<!DOCTYPE html> <!DOCTYPE html> <!DOCTYPE html>

<html> <html> <html>

<body> <body> <body>

<?php <?php <?php

$x = 10; $x = 100; $x = 100;

$y = 6; $y = 50; $y = 50;

echo $x + $y; var_dump($x > $y); // if ($x == 100 xor $y == 80) {

?> returns true because $x is echo "Hello world!";

</body> greater than $ y }

</html> ?> ?>

O/P: 16 O/P: bool(true) O/P: Hello world!

PHP -Decision Making
The if, elseif ...else and switch statements are used to take decision based on the different

condition. You can use conditional statements in your code to make your decisions. PHP

supports following three decision making statements –

Syntax EX: <html>
<body>

<?php

$d=date("D");

if ($d=="Fri")

echo "Have a nice weekend!";
else

echo "Have a nice day!";
?>
</body> </html>

if (condition)

code to be executed if condition is true;

else

code to be executed if condition is false;

Example

The following example will output "Have a

nice weekend!" if the current day is Friday,

Otherwise, it will output "Have a nice day!":

if...else statement − use this statement if you want to

execute a set of code when a condition is true and another

if the condition is nottrue

elseif statement − is used with the if...else statement to

execute a set of code if one of the several condition is true

switch statement − is used if you want to select one of

many blocks of code to be executed, use the Switch

statement. The switch statement is used to avoid long

blocks of if..elseif..else code.

 Department of CSE Page 14 of 28

The If...Else Statement

If you want to execute some code if a condition is true and another code if a condition is

false, use the if ... else statement.

The elseif Statement

If you want to execute some code if one of the several conditions is true use the elseif

statement

Syntax EX: <html>

<body>

<?php

$d=date("D");

if ($d=="Fri")

echo "Have a nice weekend!";
elseif ($d=="Sun")

echo "Have a nice Sunday!";

else

echo "Have a nice day!";
?>

</body>

</html>

if (condition)

code to be executed if condition is true;

elseif (condition)

code to be executed if condition is true;

else

code to be executed if condition is false;

Example
The following example will output "Have a

nice weekend!" if the current day is Friday,

and "Have a nice Sunday!" if the current day

is Sunday. Otherwise, it will output "Have a
nice day!"

The Switch Statement

If you want to select one of many blocks of code to be executed, use the Switch statement.

The switch statement is used to avoid long blocks of if..elseif..else code.

Syntax Example
The switch statement works in an unusual

way. First it evaluates given expression

then seeks a lable to match the resulting

value. If a matching value is found then the

code associated with the matching label

will be executed or if none of the lable

matches then statement will execute any

specified default code.

switch (expression)

{

case label1:

code to be executed if expression = label1;

break;
case label2:

code to be executed if expression = label2;

break;
default:

code to be executed

if expression is different

from both label1 and label2;

}

PHP -Loop Types

Loops in PHP are used to execute the same block of code a specified number of times. PHP
supports following four loop types.

for − loops through a block of code a specified number of times.

while − loops through a block of code if and as long as a specified condition is true.

do. . while − loops through a block of code once, and then repeats the loop as long as a
special condition is true.

 Department of CSE Page 15 of 28

foreach − loops through a block of code for each element in an array.

We will discuss about continue and break keywords used to control the loops execution.

The for loop statement

The for statement is used when you know how many times you want to execute a statement

or a block of statements.

Syntax

The initializer is used to set the start value for the counter of the number of loop iterations. A
variable may be declared here for this purpose and it is traditional to name it $i.

Example

The following example makes five iterations and changes the assigned value of two
variables on eachpass

` of the loop −

This will produce the following result –

At the end of the loop a=50 and b=25

The while loop statement

The while statement will execute a block of code if and as long as a test expression is true. If

the test expression is true then the code block will be executed. After the code has executed
the test expression will again be evaluated and the loop will continue until the test expression is

found to be false.

Syntax

Example

This example decrements a variable value on each iteration of

the loop and the counter increments until it reaches 10 when

the evaluation is false and the loop ends.
<html>

<body>

<?php

$i = 0;

<html> <body>

<?php
$a = 0;
$b = 0;

for($i=0; $i<5; $i++)
{ $a += 10; $b += 5;
}

echo ("At the end of the loop a=$a and b=$b");
?> </body> </html>

while (condition)
{

code to be executed;

}

Page |
46

for (initialization; condition; increment)

{

code to be executed;

}

 Department of CSE Page 16 of 28

$num = 50;
while($i < 10)

{

$num--;

$i++;

}
echo ("Loop stopped at i = $i and num = $num");

?> </body> </html>

This will produce the following result –

The do...while loopstatement

The do...while statement will execute a block of code at least once. It then will repeat the
loop as long as a condition is true.

Syntax

Example

The following example will increment the value of i at least once, and it will continue

incrementing the variable i as long as it has a value of less than 10 −

<html>

<body>

<?php
$i = 0; $num = 0;

do{

$i++;

O/P: Loop stopped at i = 10

}while($i < 10);

echo ("Loop stopped at i = $i");

?>

</body>

</html>

The foreach loop statement

The foreach statement is used to loop

through arrays. For each pass the value of

the current array element is assigned to

$value and the array pointer is moved by

one and in the next pass next element will be

processed.
Syntax

<html>
<body>

<?php

$array = array(1, 2, 3, 4, 5);

foreach($array as $value)

{

echo "Value is $value
";

}

?>

</body> </html>

This will produce the following result −

foreach (array as value)

{

code to be executed;

} Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

Example

Try out beside example to list out the values
of an array.

do

{

code to be executed;

}while (condition);

Loop stopped at i = 10 and num = 40

 Department of CSE Page 17 of 28

The break statement

The PHP break keyword is used to terminate the execution of a loop prematurely.

The break statement is situated inside the statement block. If gives you full control and

whenever you want to exit from the loop you can come out. After coming out of a loop

immediate statement to the loop will be executed.

Example

In the following example condition test becomes true

when the counter value reaches 3 and loop terminates.

<?php
$i = 0;

while($i < 10) {

$i++;

if($i == 3)break; }

echo ("Loop stopped at i = $i");

?> O/P: Loop stopped at i=3

The continue statement

The PHP continue keyword is used to halt the current iteration of

a loop but it does not terminate the loop. Just like the break statement

the continue statement is situated inside the statement block containing

the code that the loop executes, preceded by a conditional test. For the

pass encountering continue statement, rest of the loop code is skipped

and next pass starts.

Example

In the following example loop prints the value of array but for which condition becomes true
it just skip the code and next value is printed.

<html>

<body>

<?php

$nos = array(1, 2, 3, 4, 5);
foreach($nos as $value)

{

if($value == 3)
continue;

echo "Value is $value
";

}

This will produce the following result −

?>

</body>

</html>

PHP –Functions

PHP functions are similar to other programming languages. A function is a piece of code

which takes one more input in the form of parameter and does some processing and returns a

value. You already have seen many functions like fopen() and fread() etc. They are built- in

functions but PHP gives you option to create your own functions as well.

There are two parts which should be clear to you –

Creating a PHP Function

Calling a PHP Function

Value is 1

Value is 2

Value is 4

Value is 5

 Department of CSE Page 18 of 28

In fact you hardly need to create your own PHP function because there are already more

than 1000 of built- in library functions created for different area and you just need to call

them according to your requirement.

Creating PHP Function

It‘s very easy to create your own PHP function. Suppose you want to create a PHP function

which will simply write a simple message on your browser when you will call it. Following

example creates a function called writeMessage() and then calls it just after creating it.

PHP Functions with Parameters

PHP gives you option to pass your parameters inside a function. You can pass as many as
parameters you‘re like. These parameters work like variables inside your function.

Following example takes two integer parameters and add them together and then print them.

Passing Arguments by Reference

It is possible to pass arguments to functions by reference. This means that a reference to the

variable is manipulated by the function rather than a copy of the variable's value. Any

changes made to an argument in these cases will change the value of the original variable.

You can pass an argument by reference by adding an ampersand to the variable name in

either the function call or the function definition.

<html> <head>

<title>Writing PHP Function</title>

</head>

<body>

<?php

/* Defining a PHP Function */

function writeMessage()

{

Output: Have a nice time Kalpana!

echo "Have a nice time Kalpana!";

} /* Calling a PHP Function */
writeMessage();

?>

</body>

</html>

Output: Sum of the two numbers is : 30

<html>

<head> <title>Writing PHP Function with Parameters</title> </head>

<body>

<?php

function addFunction($num1, $num2)

{

$sum = $num1 + $num2;

echo "Sum of the two numbers is : $sum";

}

addFunction(10, 20);

?> </body> </html>

<html>

<head>

<title>Passing Argument by Reference</title>

</head>

<body>

<?php

function addFive($num)

{

 Department of CSE Page 19 of 28

PHP Functions returning value
A function can return a value using the return statement in conjunction with a value or

object. return stops the execution of the function and sends the value back to the calling
code. You can return more than one value from a function using returnarray(1,2,3,4).

Setting Default Values for Function Parameters
You can set a parameter to have a default value if the function's caller doesn't pass it.

Following function prints NULL in case use does not pass any value to this function.

Output: This is test

<html> <head> <title>Writing PHP Function which returns value</title> </head>

<body>

<?php

function printMe($param = NULL)

{

print $param;

}

printMe("This is test");
printMe();

?>

</body> </html>

Output: Returned value from the function : 30

<html> <head> <title>Writing PHP Function which returns value</title> </head>

<body>

<?php

function addFunction($num1, $num2)

{

$sum = $num1 + $num2;
return $sum;

}

$return_value = addFunction(10, 20);

echo "Returned value from the function : $return_value";

?> </body> </html>

Output: Original Value is 10

Original Value is 16

$num += 5;

}

function addSix(&$num)

{

$num += 6;

}

$orignum = 10;
addFive($orignum);

echo "O riginal Value is $orignum
";
addSix($orignum);

echo "O riginal Value is $orignum
";

?>

</body>

</html>

 Department of CSE Page 20 of 28

Dynamic Function Calls
It is possible to assign function names as strings to variables and then treat these variables
exactly as you would the function name itself.

<html>

<head>

<title>Dynamic Function Calls</title>

</head>

<body>

<?php

function sayHello()

{

echo "Hello
";

}

$function_holder = "sayHello";
$function_holder();

?> </body> </html>

<html>

<head>

<title>Dynamic Function Calls</title>

</head>

<body>

<?php

function add($x,$y)

{

echo "addition=" . ($x+$y);

}

$function_holder = "add";

$function_holder(20,30);

?> </body> </html>

Output: Hello

 Output: addition=50

PHP Default Argument Value

The following example shows how to use a default parameter. If we call the function

setHeight() without arguments it takes the default value as argument:

Example

<?php

function setHeight($minheight = 50) {

echo "The height is : $minheight \t";

}
setHeight(350);

setHeight(); // will use the default value of 50
setHeight(135);

setHeight(80);

?>

O/P: 350 50 135 80

PHP -Web Concepts and Reading data from WEB

Identifying Browser & Platform

PHP creates some useful environment variables that can be seen in the phpinfo.php page

that was used to setup the PHP environment. One of the environment variables set by PHP

is HTTP_USER_AGENT which identifies the user's browser and operating system.

Using HTML Formwith name validation in PHP: test.php

<?php

if($_POST["name"] || $_POST["age"])

{

if (preg_match("/[^A- Za-z'-]/",$_POST['name']))

{

die ("invalid name and name should be alpha"); }

echo "Welcome ". $_POST['name']. "
";

 Department of CSE Page 21 of 28

The PHP default variable $_PHP_SELF is used for the PHP script name and when you
click "submit" button then same PHP script will be called and will produce followingresult

The method = "POST" is used to post user data to the server script.

PHP Forms and User Input:

The PHP $_GET and $_POST variables are used to retrieve information from forms, like
user input.

PHP - GET & POST Methods

There are two ways the browser client can send information to the web server.

The GET Method

The POST Method

Before the browser sends the information, it encodes it using a scheme called URL

encoding or URL Parameters. In this scheme, name/value pairs are joined with equal signs

and different pairs are separated by the ampersand.

The GET Method

The GET method sends the encoded user information appended to the page request. The

page and the encoded information are separated by the ?character.

The GET method produces a long string that appears in your server logs, in the browser's
Location: box.

The GET method is restricted to send upto 1024 characters only.

Never use GET method if you have password or other sensitive information to be sent to
the server.

GET can't be used to send binary data, like images or word documents, to the server. The PHP
provides $_GET associative array to access all the sent information using GET method.

http://www.sampletest.com/index.htm?name1=value1&name2=value2

name1=value1&name2=value2&name3=value3

echo "You are ". $_POST['age']. " years old.";

exit();

} ?>

<html>

<body>

<form action="<?php $_PHP_SELF ?>" method="POST">

Name: <input type="text" name="name" />

Age: <input type="text" name="age" />
<input type="submit" />

</form> </body> </html>

<?php

if($_GET["name"] || $_GET["age"])
{

echo "Welcome ". $_GET['name']. "
";

echo "You are ". $_GET['age']. " years old.";
exit();

}
?> <html> <body>

http://www.sampletest.com/index.htm?name1=value1&name2=value2

 Department of CSE Page 22 of 28

The POST Method

The POST method transfers information via HTTP headers or HTTP Parameters. The

information is encoded as described in case of GET method and put into a header called

QUERY_STRING.

The POST method does not have any restriction on data size to be sent.
The POST method can be used to send ASCII as well as binary data.

The data sent by POST method goes through HTTP header so security depends on HTTP

protocol. By using Secure HTTP you can make sure that your information is secure.

The PHP provides $_POST associative array to access all the sent information using POST

method.

PHP Form Handling

Example : The example below contains an HTML form with two input fields and a submit
button:

When a user fills out the form above and click on the submit button, the form data is sent

to a PHP file, called "welcome.php": its looks like this:

$_GET is an array of variables passed to the current script via the URL parameters.

$_POST is an array of variables passed to the current script via the HTTP POST method.

PHP -File Uploading
A PHP script can be used with a HTML form to allow users to upload files to the server.

Initially files are uploaded into a temporary directory and then relocated to a target

destination by a PHPscript.

Information in the phpinfo.php page describes the temporary directory that is used for file

uploads as upload_tmp_dir and the maximum permitted size of files that can be uploaded

is stated as upload_max_filesize. These parameters are set into PHP configuration

file php.ini

<html>

<body>

<form action="we lcome.php" method="post">
Name: <input type="text" name="fname" />

Age: <input type="text" name="age" />

<input type="submit" />

</form>

</body>

</html>

<form action="<?php $_PHP_SELF ?>" method="GET">
Name: <input type="text" name="name" />

Age: <input type="text" name="age" />

<input type="submit" />

</form> </body> </html>

<html> <body>

Welcome <?php echo $_POST["fname"]; ?>!

You are <?php echo $_POST["age"]; ?> years old.

</body>

</html> Output: Welcome Kalpana! You are 29 years old.

 Department of CSE Page 23 of 28

The process of uploading a file follows these steps −

The user opens the page containing a HTML form featuring a text files, a browse button

and a submit button.

The user clicks the browse button and selects a file to upload from the local PC.

The full path to the selected file appears in the text filed then the user clicks the submit
button.

The selected file is sent to the temporary directory on the server.

The PHP script that was specified as the form handler in the form's action attr ibute checks
that the file has arrived and then copies the file into an intended directory.

The PHP script confirms the success to the user.

As usual when writing files it is necessary for both temporary and final locations to have

permissions set that enable file writing. If either is set to be read-only then process will fail.

An uploaded file could be a text file or image file or any document.

Creating an upload form

The following HTML code below creates an up loader form. This form is having method
attribute set to post and enctype attribute is set to multipart/form-data

There is one global PHP variable called $_FILES. This variable is an associate double

dimension array and keeps all the information related to uploaded file. So if the value

assigned to the input's name attribute in uploading form was file, then PHP would create

following five variables –

$_FILES['file']['tmp_name'] the uploaded file in the temporary dir on the web server.

$_FILES['file']['name'] − the actual name of the uploaded file.

$_FILES['file']['size'] − the size in bytes of the uploaded file.

$_FILES['file']['type'] − the MIME type of the uploaded file.

$_FILES['file']['error'] − the error code associated with this file upload.

Example: Below example should allow upload images and gives back result as uploaded

file information.

Sent file: <?php echo

$_FILES['image']['name']; ?>

File size: <?php echo

$_FILES['image']['size']; ?>

File type: <?php echo

$_FILES['image']['type'] ?>

<img src=" <?php echo

$_FILES['image']['name']; ?>"
height="200" width="200" />

</form>

</body>

</html

<?php

if(isset($_FILES['image']))

{

$file_name =

$_FILES['image']['name'];

$file_size =$_FILES['image']['size'];

$file_type=$_FILES['image']['type'];

}

?>

<html> <body>

<form action="" method="POST"

enctype="multipart/form-data">

<input type="file" name="image" />

<input type="submit"/>

 Department of CSE Page 24 of 28

PHP -Cookies

Cookies are text files stored on the client computer and they are kept of use tracking purpose.

PHP transparently supports HTTP cookies.

There are three steps involved in identifying returning users −
Server script sends a set of cookies to the browser. For example name, age, or

identification number etc.

Browser stores this information on local machine for future use.

When next time browser sends any request to web server then it sends those cookies
information to the server and server uses that information to identify the user.

Setting Cookies with PHP

PHP provided setcookie() function to set a cookie. This function requires upto six

arguments and should be called before <html> tag. For each cookie this function has to be

called separately.

Here is the detail of all the arguments −

Name − This sets the name of the cookie and is stored in an environment variable
called HTTP_COOKIE_VARS. This variable is used while accessing cookies.

Value − This sets the value of the named variable and is the content that you actually

want to store.

Expiry − This specify a future time in seconds since 00:00:00 GMT on 1st Jan 1970.

After this time cookie will become inaccessible. If this parameter is not set then

cookie will automatically expire when the Web Browser is closed.

Path − This specifies the directories for which the cookie is valid. A single forward

slash character permits the cookie to be valid for all directories.

Domain − This can be used to specify the domain name in very large domains and

must contain at least two periods to be valid. All cookies are only valid for the host

and domain which created them.

Security − This can be set to 1 to specify that the cookie should only be sent by

secure transmission using HTTPS otherwise set to 0 which mean cookie can be sent

by regular HTTP.

Following example will create two cookies name and age these cookies will be expired after
one hour.

Accessing Cookies with PHP

PHP provides many ways to access cookies. Simplest way is to use either $_COOKIE or

$HTTP_COOKIE_VARS variables. Following example will access all the cookies set in
above example.

setcookie(name, value, expire, path, domain, security);

<?php
setcookie("name", "KALPANA", time()+3600, "/","", 0);

setcookie("age", "36", time()+3600, "/", "", 0);

?>

<html>

<head> <title>Setting Cookies with PHP</title> </head>
<body>

<?php echo "Set Cookies"?>

</body>

</html>

 Department of CSE Page 25 of 28

You can use isset() function to check if a cookie is set or not.

Deleting Cookie with PHP

Officially, to delete a cookie you should call setcookie() with the name argument only but

this does not always work well, however, and should not be relied on.

It is safest to set the cookie with a date that has already expired –

PHP - Session
When you work with an application, you open it, do some changes, and then you close it.
This is much like a Session.

Session ID is stored as a cookie on the client box or passed along through URL's.

The values are actually stored at the server and are accessed via the session id from your

cookie. On the client side the session ID expires when connection is broken.

Session variables solve this problem by storing user information to be used across multiple

pages (e.g. username, favorite color, etc). By default, session variables last until the user

closes the browser.

Session variable values are stored in the 'superglobal' associative array '$_SESSION'

<?php

setcookie("name", "", time()- 60, "/","", 0);

setcookie("age", "", time()- 60, "/","", 0);

?>

<html>

<head> <title>Deleting Cookies with PHP</title> </head>

<body>

<?php echo "Deleted Cookies" ?>

</body> </html>

<html> <head> <title>Accessing Cookies with PHP</title> </head>
<body>

<?php

if(isset($_COOKIE["name"]))

echo "Welcome " . $_COOKIE["name"] . "
";

else

echo "Sorry... Not recognized" . "
";
?>

</body> </html>

<html>

<head> <title>Accessing Cookies with PHP</title> </head>

<body>

<?php

echo $_COOKIE["name"]. "
";

/* is equivalent to */

echo $HTTP_COOKIE_VARS["name"]. "
";
echo $_COOKIE["age"] . "
";

/* is equivalent to */

echo $HTTP_COOKIE_VARS["name"] . "
";

?>

</body> </html>

 Department of CSE Page 26 of 28

Start a PHP Session

A session is started with the session_start() function.

Session variables are set with the PHP global variable: $_SESSION.

demo_session1.php
<?php

// Start the session

session_start();

?>
<html>

<body>

<?php

// Set session variables

$_SESSION["favcolor"] = "green";
$_SESSION["favanimal"] = "cat";

echo "Session variables are set.";

?>
</body> </html>

Modify a PHP Session Variable
To change a session variable, just overwrite
it:

<?php

session_start();

?>

<html>

<?php

$_SESSION["favcolor"] = "yellow";

print_r($_SESSION); ?> </html>

Get PHP Session Variable Values

Next, we create another page called "demo_session2.php". From this page, we will
access the session information we set on the first page ("demo_session1.php").

Notice that session variables are not passed individually to each new page, instead they are

retrieved from the session we open at the beginning of each page (session_start()).

<?php
session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// Echo session variables that were set on previous page

echo "Favorite color is " . $_SESSION["favcolor"] . ".
";
echo "Favorite animal is " . $_SESSION["favanimal"] . ".";

?>

</body> </html>

Destroy a PHP Session
To remove all global session variables and destroy the session, use session_unset() and
session_destroy():

Example

<?php
session_start();

?>

<html>

<body>

<?php

session_unset(); // remove all session variables

session_destroy(); // destroy the session

?> </body> </html>

 Department of CSE Page 27 of 28

Difference between a session and a cookie
The main difference between a session and a cookie is that session data is stored on

the server, whereas cookies store data in the visitor's browser.

Sessions are more secure than cookies as it is stored in server. Cookie can be turn off

from browser.

 Sessions Cookies

1 Sessions are server-side files that contain user

information

Cookies are client-side files that contain

user information

2 Session Max life time is 1440 Seconds(24
Minutes) as defined in php.ini file

in php.ini on line 1604 you can find

; http://php.net/session.gc- maxlifetime
session.gc_maxlifetime = 1440

You can edit this value if you need custom
session life.

We have to set cookie max life time

manually with php code with setcookie
function.

setcookie("email", 'test@example.com',

time()+3600); /* expire in 1 hour */

Expire time : I hour after current time

3 In php $_SESSION super global variable is used
to manage session.

In php $_COOKIE super global
variable is used to manage cookie.

4 Before using $_SESSION, you have to write

session_start(); In that way session will start

You don't need to start Cookie as It is

stored in your local machine.

5 You can store as much data as you like within in

sessions.(default is 128MB.) memory_limit=

128M
php.ini line 479 ;http://php.net/memory- limit

Official MAX Cookie size is 4KB

6 Session is dependent on COOKIE. Because when you start session with session_start() then

SESSIONID named key will be set in COOKIE with Unique Identifier Value for your

system.

7 session_destroy(); is used to "Destroys all data

registered to a session", and if you want to unset

some key's of SESSION then use unset()

function.
unset($_SESSION["key1"],
$_SESSION["key2"])

There is no function named

unsetcookie()

time()-3600);//expire before 1hour
In that way you unset cookie(Set cookie
in previous time)

8 Session ends when user closes his browser. Cookie ends depends on the life time

you set for it.

9 A session is a group of information on the server

that is associated with the cookie information.

Cookies are used to identify sessions.

Write a Program to create simple Login and Logout example using sessions.

login.php

<html>

<head>

<title>Login Form</title>

</head>

<body>

<h2>Login Form</h2>

<form method="post" action="checklogin.php">
User Id: <input type="text" name="uid">

http://php.net/session.gc-
http://php.net/memory-

 Department of CSE Page 28 of 28

Password: <input type="password" name="pw">

<input type="submit" value="Login">

</form>

</body>

</html>

checklogin.php

<?php

$uid = $_POST['uid'];

$pw = $_POST['pw'];

if($uid == 'arun' and $pw == 'arun123')

{

session_start();

$_SESSION['sid
']=session_id();
header("location

:securepage.php
");

}

?>

securepage.php

<?php

session_start();
if($_SESSION['s
id']==session_id(
))

{

echo "Welcome to you
";

echo "Logout";

}

else

{

header("location:login.php");

}

?>

logout.php

 <?php
echo "Logged
out
scuccessfully"
;
session_start()
;
session_destro
y();
setcookie(PHPSESSID,session_id(),time()-1); ?

	UNIT- I PHP
	TOPICS:
	PHP INTRODUCTION
	Common uses of PHP:
	Characteristics of PHP:

	PHP - VARIABLE TYPES
	PHP is a Loosely Typed Language:
	Naming Rules for Variables
	PHP Variables Scope
	local global static
	Example
	Example (1)
	PHP The global Keyword
	Example (2)
	Example (3)
	PHP The static Keyword
	Example (4)

	Variable Naming
	There is no size limit for variables.

	PHP Integers
	notation.php
	boundary.php

	PHP Doubles or Floating point numbers
	PHP Boolean
	$male = $r? True: False;

	PHP Strings
	Output: PHP PERL We can use single quotes and double quotes to create string literals.
	The escape-sequence replacements are −
	The Concatenation Operator
	Search for a Specific Text within a String
	Example
	output: 6
	Replace Text within a String
	Example (1)
	Output: Hello Kalpana!
	The output of the code above will be: 12
	Example (2)

	PHP Object
	Example
	Output: VW
	Ex: $my_var = NULL;
	$my_var = null;
	Example1

	PHP Resource
	constant() function
	PHP - Operators:
	What is Operator?
	Arithmetic Operators:
	Increment/Decrement operators
	Logical Operators:
	Assignment Operators:
	Conditional Operator
	The conditional operator has this syntax:
	PHP Array Operators

	PHP -Decision Making
	The If...Else Statement
	The elseif Statement
	Syntax
	Example
	This will produce the following result – At the end of the loop a=50 and b=25
	Syntax (1)
	This will produce the following result –
	Syntax (2)
	Example (1)
	The continue statement
	Example
	This will produce the following result −
	Creating a PHP Function Calling a PHP Function

	Passing Arguments by Reference
	PHP Functions returning value
	Setting Default Values for Function Parameters
	Dynamic Function Calls
	PHP Default Argument Value
	Example
	O/P: 350 50 135 80

	Using HTML Formwith name validation in PHP: test.php
	PHP Forms and User Input:

	PHP - GET & POST Methods
	The GET Method
	The POST Method
	PHP Form Handling

	PHP -File Uploading
	The process of uploading a file follows these steps −
	Example: Below example should allow upload images and gives back result as uploaded file information.
	Setting Cookies with PHP
	Accessing Cookies with PHP
	Deleting Cookie with PHP

	PHP - Session
	Start a PHP Session
	Get PHP Session Variable Values
	Destroy a PHP Session
	Example

	Difference between a session and a cookie
	Write a Program to create simple Login and Logout example using sessions. login.php

